Passive scalar decay laws in isotropic turbulence: Prandtl number effects
نویسندگان
چکیده
منابع مشابه
Simulation of Low Reynolds Number Isotropic Turbulence Including the Passive Scalar
Full simulations of homogeneous isotropic turbulence containing a homogeneous passive scalar were made at low Reynolds numbers and various Prandtl numbers. The results show that the spectral behavior of the two fields are quite similar; both fields decay as power-law functions of time. However. the decay exponent is quite dependent on both the Reynolds and Prandtl numbers. The decay exponent of...
متن کاملTurbulent Prandtl number effect on passive scalar advection
A generalization of Kraichnan’s model of passive scalar advection is considered. Physically motivated regularizations of the model are considered which take into account both the effects of viscosity and molecular diffusion. The balance between these two effects on the inertial range behavior for the scalar is shown to be parameterized by a new turbulent Prandtl number. Three different regimes ...
متن کاملDecay of scalar turbulence revisited.
We demonstrate that at long times the rate of passive scalar decay in a turbulent, or simply chaotic, flow is dominated by regions where mixing is less efficient. We examine two situations. The first is of a spatially homogeneous stationary turbulent flow with both viscous and inertial scales present. It is shown that at large times scalar fluctuations decay algebraically in time at all spatial...
متن کاملActive versus passive scalar turbulence.
Active and passive scalars transported by an incompressible two-dimensional conductive fluid are investigated. It is shown that a passive scalar displays a direct cascade towards the small scales while the active magnetic potential builds up large-scale structures in an inverse cascade process. Correlations between scalar input and particle trajectories are found to be responsible for those dra...
متن کاملA priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence.
We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluid Mechanics
سال: 2015
ISSN: 0022-1120,1469-7645
DOI: 10.1017/jfm.2015.575